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ABSTRACT 

In 1962, Palermo used two conjugate Linear Frequency Modulated (LFM) pulses 

to demonstrate a Non-linear Ambiguity Suppression (NLAS) technique to reduce ambig-

uous energy in radar returns.  Using conjugate LFM pulse coding does not readily extend 

to larger symbol families and thus is severely limited for M-channel (M > 2) NLAS 

applications.  Larger families of optimal mutually dispersive codes with higher time 

bandwidth products are needed to achieve the desired M-fold range ambiguity reduction. 

Using correlation function rms time duration as an optimization metric, the 

recently proposed Brown’s theorem formulates a deterministic process for designing 

optimal mutually dispersive symbol sets of arbitrary size.  The rms time duration perfor-

mance of digitized “Brown” symbols is invariant to choice of basis (phase-rate) functions 

used in the design process, yet improvement in cross-correlation sidelobe performance is 

directly linked to basis function design.  This insight provided the impetus for designing 

and synthesizing a new set of mutually dispersive symbols based on Variable Slope (VS) 

piecewise basis functions.  The resultant VS piecewise-based “Brown” symbols are used 

with NLAS processing to demonstrate M-fold ambiguity suppression capability.  Despite 

the presence of two undesired ambiguous signal responses having +24.0 dB more signal 

power relative to the weaker desired unambiguous signal, the NLAS processor effectively 

suppressed the ambiguous responses. The desired signal peak NLAS output response was 

approximately 11.0 dB above the noise floor and undesired ambiguous responses were 

suppressed an average of 10.0 to 12.0 dB – a net improvement of approximately 21.0 to 

22.0 dB
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DEVELOPMENT OF VARIABLE SLOPE PIECEWISE-BASED BROWN 

SYMBOLS FOR APPLICATION TO NONLINEAR AMBIGUITY SUPPRESSION 

 
 
 

CHAPTER 1.  INTRODUCTION 
 
 

1.1 Background 

In a simplistic sense, a RAdio Detection And Ranging (radar) system is designed 

to illuminate an area of interest with electromagnetic energy and process the back-

scattered energy to determine the presence (detection) and characteristics (parametric 

estimation) of objects in the environment.  In the earliest stages of development, the radar 

system was categorized as either a continuous wave (CW) or a pulsed system [1:1].  A 

CW radar system provides good velocity measurements while pulsed systems offer good 

range and resolution capability.  During World War II, research efforts in the radar arena 

focused on extending the range detection capability.  Although many factors affect radar 

range detection capability, one solution to enhance performance is increasing the average 

transmit power (transmitting for a longer time) of the pulsed waveform.  However, longer 

transmit time (pulse duration) corresponds to poorer range resolution; the fundamental 

design trade-off involves obtaining sufficient average power on the target while 

preserving waveform range resolution which is inversely related to transmitted pulse 

duration.   As radar development evolved, Woodward noted that “range resolution and 

accuracy were a function of the signal bandwidth, and not of the transmitted pulse width” 

[1:2].  Thereafter, radar waveform designers were provided another dimension that could 
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be used in optimizing radar system performance.  A natural consequence of exploiting 

this dimension was the need for more complex radar receivers capable of detecting the 

“new” waveforms.  With these issues in mind, radar engineers shifted their focus and 

began investigating various pulse modulation techniques having increased signal 

bandwidth, and thus desired resolution, while preserving the required average power for 

detection.  Linear Frequency Modulated (LFM) waveforms and receiver designs based on 

matched filter detection concepts were the first successful outcomes of the new paradigm 

shift in radar engineering. 

 
 

1.2 Radar Range Ambiguity 

In a pulsed radar system, the Pulse Repetition Interval (PRI) controls the time 

delay between pulse transmissions.  The variation of PRI leads to ambiguities in both 

range and Doppler measurements.   As the accuracy of range measurements improve with 

changes in PRI, Doppler estimation performance degrades.  Changes in PRI affect radar 

range and Doppler parametric estimation in opposite ways.  Range ambiguities are 

mainly caused by a periodic transmission of successive pulses, the responses of which are 

coherently summed by the receiver during a given coherent processing interval (usually 

equal to one PRI).  In such a situation, the radar receiver inaccurately attributes the 

current processed response to the most recently transmitted pulse and produces inaccurate 

range measurements.   This research effort focuses on processing techniques, a 

combination of waveform coding and nonlinear signal processing, to resolving range 

ambiguous responses in high Pulse Repetition Frequency (PRF) radar systems.   
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Without affecting Doppler accuracy, one approach to resolve range ambiguities is 

to uniquely code each transmitted pulse and build a receiver structure to uniquely identify 

each corresponding pulse return.  The detection of coded pulse returns is widespread in 

digital communications applications.  In most cases, Matched Filter detection is 

employed to discriminate code responses of interest.  The signal separation performance 

of this energy detection scheme is based on having “good” correlation code properties in 

modulated waveforms.  In the context of signal separability, “good” code properties 

include:  a focused (compressed) response when correlating with the code of interest and 

a flat (dispersed) response when correlating with all other codes.  Although digital 

communication applications share many commonalities with radar, there are some unique 

characteristics inherent in the nature of radar pulse returns.  For example, in terrain 

mapping radar, ground clutter reflections act as strong interferers and prevent the 

detection of weaker unambiguous target responses.  As a result, the detection processes 

for radar signals require good code properties and additional radar specific signal 

processing techniques to discriminate the pulse response of interest. 

In 1962, Palermo used two conjugate LFM pulses to demonstrate a Non-Linear 

Ambiguity Suppression (NLAS) signal processing technique to reduce ambiguous energy 

in processed radar returns [2].  This technique employed interpulse (pulse-to-pulse) 

coding to distinguish between radar pulse returns while exploiting the compression and 

dispersion properties of intrapulse (within the pulse) LFM coding to suppress ambiguous 

energy levels.  The suppression operation consisted of the following processes:  

compression, non-linear threshold, and dispersion. In the compression process, the energy 

of an undesired pulse is focused using a filter matched for that code.  Compression 
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effectiveness is related to the focused response mainlobe energy concentration and 

resolution.  The non-linear threshold operation was designed to limit the compressed 

response at a predetermined energy level.  The energy limiting process relied on both 

compression effectiveness and low sidelobe structure (indicating mutual dispersiveness) 

of cross-correlation responses to remove only the undesired energy.  In the dispersion 

process, the initial signal (before compression) is reconstructed to its original form 

without contributions of the suppressed undesired signal.  Suppression processing 

continues in an iterative fashion until only the signal of interest remains in the processed 

radar return.  This signal is then match filtered and the target response determined from 

the processed returns with reduced ambiguous energy levels.  Using this NLAS process, 

Palermo demonstrated a two-fold improvement in unambiguous range. 

Achieving an M-fold improvement in ambiguity resolution relies on the existence 

of larger code families possessing LFM-like properties.  Most discrete codes do not 

posses the compression and cross-correlation dispersive properties desired for NLAS 

applications.  As a result, Brown formulated a deterministic process for designing optimal 

mutually dispersive symbols of arbitrary size and achieving the finest resolution [3].  The 

resultant symbols are optimal in rms time duration of correlation functions, with the 

dispersive nature determined by the square of the Euclidean distance between weighted 

linear combinations of optimal basis functions and final resolution a function of the 

symbol envelope.  Although symbols generated using Brown’s prescribed process 

demonstrate optimality in terms of the rms time duration metric, the cross-correlation 

dispersion characterized by the sidelobe metrics is not optimal for NLAS applications.  

Thus, phase-rate functions yielding Brown symbols that exhibit optimal dispersion in 
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terms of both the correlation rms time duration and sidelobe metrics must be designed for 

NLAS applications. 

 
 

1.3 Research Goal 

The goal of this research is to: 

1.  Describe a systematic process for designing new basis functions providing 

improvement over previously developed Brown symbols.  Specifically, 

consider variable slope piecewise basis functions and characterize resultant 

Brown symbol performance. 

2. Demonstrate the impact associated with designing Brown symbols with a 

uniform spectral taper and implementing with a cosine spectral taper.   

3. Characterize the effect that time windowing (truncating) band limited Brown 

symbols has on NLAS system implementation and performance. 

4. Characterize NLAS detection and ambiguity suppression effectiveness using 

Brown symbols.  Detection performance is characterized relative to 

conventional matched filter performance. 

 
 

1.4 Thesis Organization 

Chapter II introduces pulse compression theory and outlines metrics used to 

characterize Brown symbol performance and NLAS effectiveness.  The NLAS concept is 

explained in light of desirable code properties while the adaptive reserved code threshold 

technique is introduced as a means to suppress ambiguous energy levels.  Finally, the 
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Brown symbol development is offered as a mechanism for generating codes that are well-

suited for NLAS applications. 

Chapter III explains a new envelope exchange implementation approach  aimed at 

improving Brown symbol cross-correlation sidelobe performance (dispersion) while 

preserving waveform rms time duration.  An analysis for design trade-off impacts is 

established and the verification process for a new variable slope piecewise-based Brown 

symbol design is presented.  Generation specifications for band limited Brown symbols 

are analyzed in light of time windowed implementing of these signals.  Finally, the 

experimental set-up for demonstration NLAS ambiguity suppression using the new 

Brown symbols NLAS is presented. 

Chapter IV presents the results from analysis, design and synthesis of Brown 

symbols based on the new variable slope piecewise basis function.  Parameter 

characteristics for generating Brown symbols that are least sensitive to time windowing 

are presented.  Lastly, NLAS ambiguity suppression capability is quantified for Brown 

symbols generated with various basis functions.  Brown symbol performance is 

benchmarked relative to LFM waveform coding while NLAS suppression and detection 

capability is established relative to conventional matched filtering.   

Chapter V provides a summary of the research results and contributions.  Efforts 

to improve ambiguity suppression using NLAS are discussed and recommendations for 

future research provided.        
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CHAPTER 2.  BACKROUND 
 
 

2.1 Origin of Pulse Compression 

The study of pulse compression theory must first address the motivation leading 

to its development for optimizing radar waveform performance.  To this end, most 

studies begin pulse compression analysis using the fundamental radar range equation, 

given by [5:7]: 

 

( )
4 3

22

4 min

t
max S

GPR
π

σλ
=   

(2-1) 

 

where Rmax is the maximum detection range, Pt is the average transmit power, G  is the 

transmit and receive gain (equal in the monostatic radar case), λ = c/f  is the transmit 

wavelength, σ  is the target radar cross-section, and Smin is the minimum required 

detectable signal strength.  Equation (2-1) shows the relationship between maximum 

detection range (Rmax), transmission parameters (Pt, G, λ) and received signal power (G, 

σ, Smin).  Variation of parameters in (2-1) provided the initial framework for optimizing 

radar performance, yet this variation alone did not provide desired results and several 

issues remained unresolved, including [1]:  

a) The inefficient use of available average power to the radar transmitter – 

limited mainly by range resolution constraints 

b) The lack of resolution in both range and velocity (Doppler) 
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c) The vulnerability of radar signals to interfering signals 

d) The shortfalls in parameter estimation 

In the quest to improve radar performance, Woodward’s contribution led to the 

development of pulsed radar waveforms having higher average power capability without 

needing increased peak transmitter power or degrading pulse resolution [1:2].  

R.H. Dicke was the first to formalize an efficient transmission approach based on 

Woodward’s idea.  He proposed the use of Linear Frequency Modulated (LFM) 

waveforms with a linear time delay pulse compression filter (Matched Filter) [4:1].  

 
 

2.2 LFM Waveform Properties 

By varying the sinusoid frequency, in proportion to the modulating signal 

amplitude, the spectral content (bandwidth) of the signal increases.  This form of 

frequency modulation (FM) is widely used, versus amplitude modulation (AM), in radar 

applications to improve transmission efficiency [5:341].  Wideband FM designs offer 

improved output signal-to-noise ratio (SNR) when compared with AM [6:341].  In pulsed 

radar systems employing LFM waveforms, the transmitted pulse is designed with a 

relatively long duration while linearly frequency modulating the carrier.  The span of 

LFM modulation is determined by required resolution while the time duration is set 

according to the energy required to achieve the desired detection range [7].  This 

generation process was made possible by Woodward’s decoupling of range detection and 

resolution.  The long pulse duration increases available average power at transmission 

and thereby extends range detection capability.  For detecting LFM waveforms, a 
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receiver having linear time versus frequency delay characteristics is used to compress the 

received signal in time, effectively increasing the signal’s peak power and providing 

improved range resolution.  Figure 2-1 shows the magnitude of the compressed filter 

output characteristics for an LFM waveform with total frequency span (bandwidth) of B. 
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Figure 2-1.  Normalized Compressed Output of LFM Waveform Using Linear Time 
Versus Frequency Delay Filter. 

 

2.2.1 Resolution. 

Radar resolution is defined as the ability to separate two closely-spaced scatterers [8].  

The compressed LFM waveform envelope in Figure 2-1 approximately follows a 

sinc(t) = sin(t)/t response (under high bandwidth condition) and has resolution ∆r defined 

by: 

2
c

B2
cr τ∆ ==  (2-2) 
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where c represents the speed-of-light, B is the modulated signal bandwidth and �is the 

compressed pulse duration measured at – 4.0 dB points relative to the compressed peak 

response of the time function.  As the LFM frequency span (B) increases, the FM 

modulated signal bandwidth increases and resolution (∆r) improves (decreases).  The 

improvement in resolution is attributed to a decrease in the mainlobe width (time domain) 

of Figure 2-1 resulting from increased bandwidth.  In other words, high bandwidth 

signals provide more information about the illuminated environment’s electromagnetic 

characteristics and enable better range resolution or distinction of two closely spaced 

targets.  

 
2.2.2 Pulse Compression Ratio (PCR) and Time bandwidth (TB) Product. 

The pulse compression ratio (PCR) and time bandwidth product (TB) for an LFM 

waveform having an ideal rectangular spectral response is: 

TBTPCR ==
τ

 (2-3) 

\where T is the transmitted waveform duration, τ is the compressed pulse duration (as 

previously defined) and B is the transmitted signal bandwidth.  As the waveform 

envelope changes, the relationship in (2-3) becomes an approximate relationship.  If the 

waveform is not modulated (no compression), B = 1/T and TB = 1.  For a modulated 

waveform, B = 1/τ and τ < Τ  results in TB > 1, i.e., systems employing pulse 

compression have TB products greater than one.  It is also common to study waveform 

properties of statistical densities using moments.  This type of rigorous waveform 

characterization is prevalent in the analysis of precision and resolution performance [9].  
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The “energy function” of a signal can be defined as the modulus squared of the signal 

representation in the time or frequency domain.  The first moment of this energy 

function, normalized by the signal energy, is used to describe “center of mass” of the 

energy function in time and frequency respectively as: 

 

(2-4) 

The second-order moments of the energy function, specifically the root mean squared 

(rms) duration, provides a measure of signal energy  “spread” in the time (σ) and 

frequency (Σ) domains as [9:37]: 

 

(2-5) 

 
Introducing the rms duration of signals leads to the notion of “effective” time and 

“effective” frequency when discussing signal properties.  This leads to “effective” time-

bandwidth product (σ⋅Σ) which is bounded by Gabor [10] as: 

1≥⋅Σσ  (2-6) 

 
2.2.3 Compressed Envelope Sidelobe Properties. 

Increasing bandwidth effectively decreases the main lobe width of the compressed LFM 

pulse response.  The envelope sidelobes decrease as a function of time displacement from 

pulse center and stays constant, relative to the peak response, with increased bandwidth.  
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If an LFM waveform is generated with a uniform spectrum and filtered with a matched 

version of itself, the peak sidelobe level (PSL) of (2-7) will never vary from –

13.2 dB [11:537, 12].  In (2-7), compressed filter response θ(x,x) is generated by 

correlating a waveform using n time delays and sampling the received responses at a rate 

such that the response extremes are captured. 

( )

( )




















= ≠

2
0

2
n

max

0n

x,x

x,xn
log10PSL

θ

θ
 

(2-7) 

One approach for changing PSL level is to change the pulse’s spectral shape.  This comes 

at the cost of lowering signal-to-noise ratio and increasing the first null width of the 

sinc(t) response in Figure 2-1 [13].  Lower sidelobe levels are generally desirable to 

decrease the false alarm probability in environments with high target density.  As a result, 

waveform design achieving having low PSL levels is an important aspect in determining 

“optimal” waveform shape.  

 
Similarly, the integrated side-lobe level (ISL) metric of (2-8) provides a measure of total 

energy distributed in the sidelobes.  When pulse compression is used in radar imaging 

applications, a high concentration of signal strength in the main lobe is needed for target 

detection and resolution [12].  This requirement dictates the use of waveforms having low 

ISL levels.   
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Both PSL and ISL can be used to characterize the compression filter response when the 

transmitted waveform is correctly matched at the receiver.  When the compression filter 

is mismatched to a signal y, in place of x, the PCCL level defined in (2-9) becomes 

another important factor in characterizing waveform performance.  This metric shows the 

difference in power between the peak compressed power and the sidelobe levels in a 

mismatched scenario.  A dispersed response with low PCCL levels is characteristic of 

LFM waveforms.   
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2.3 Traditional Approaches to Resolve Range Ambiguity 

There are three basic approaches to resolving range ambiguities, including, 1)  

using multiple PRI’s, 2) Frequency Modulation (FM) ranging, and 3) pulse coding      

[14:1-18].  In the multiple PRI approach, the transmitter sends bursts of pulses at various 

pulse repetition intervals.  The radar receiver processes the pulse returns to determine 

target range.  If a target’s range at varying PRI’s is not constant, a range ambiguous 

situation is indicated. This approach relies heavily on selecting the correct set of PRI’s 
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for determining range.  Research efforts focused on optimizing PRI selection include the 

Chinese remainder theorem [5:176], the residual look-up table algorithms [15], the 

major-minor Pulse Repetition Frequency(PRF) method and the M:N method 

[16:274-277].  Although all these methods are relatively simple to implement, the major 

shortfall in using a multiple PRI approach is the inability to coherently process between 

multiple PRI bursts, thus reducing the overall coherent processing interval [14].  On a 

positive note, the multiple PRI method mitigates eclipsing loss, i.e., loss of target returns 

when the transmitter is sending out pulses in a radar system where only a single antenna 

is employed. 

The FM ranging approach utilizes Doppler shift to calculate the actual target 

range.  A timing mark embedded in the transmitted pulse (through a modulation process, 

such as linear FM) allows the receiver to calculate the time delay [16:289].  Although the 

radar operator may find the FM ranging approach effective for determining single target 

range, this approach fails in a target rich environment.  As the number of targets 

increases, the operator is unable to distinguish between closely spaced targets. 

The pulse coding approach to range ambiguity resolution relies on the 

transmission of diversely coded pulses and an effective signal processing architecture for 

uniquely identifying processed signal returns.  This approach to ambiguity resolution 

using NLAS receiver architecture is described in Section 2.4.   
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2.4 Nonlinear Ambiguity Suppression (NLAS) Approach 

For NLAS processing, unique coding is applied to individual pulses (intrapulse 

coding) on a pulse-by-pulse basis (interpulse coding) such that received ambiguous 

returns may be attributed to individually transmitted pulses.  For M-channel NLAS  

processing, each channel consists of M – 1 elemental suppression operations (ESO) 

followed by matched filtering for the code response of interest [17].  Figure 2-2 is the 

kth-stage of ESO processing using the adaptive reserved code thresholding (ARCT) 

technique that will be presented in Section 2.4.2.  In the ESO, the ambiguous (undesired) 

coded uj response is compressed (focused) by matched filter hj[n] and coded uk responses 

(k = 1, 2, … , M and k ≠ j) are dispersed (defocused) – the goal is to produce output yk[n] 

devoid of uj responses. 

Γγ [n]

α[n] = Max | r[n] | 
Over Interval IK

yk-1[n]
]n[hj

x[n]

γ[n] = β⋅α[n]

yk[n]
]n[hj −∗

xΓ [n]

]n[hRsvd

r[n]
β

  
Figure 2-2.  kth-Stage Elemental Suppression Operation with Adaptive Reserved Code 

Thresholding (ARCT) 
 
Suppression is accomplished using a non-linear “hole punch” operation given by (2-10): 
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Non-linearity Γγ[n] suppresses (zeros) all x[n] samples having a magnitude 

greater than γ[n] = β⋅α[n].  Suppressed response xΓ[n] is then conjugate matched filtered 

for uj by ][ nhj −∗ , ideally yielding output yk[n] having original uk (k ≠ j) responses and 

residual components of the suppressed uj response.  By applying the ESO M – 1 times, 

each NLAS channel operates at an effective PRI of M times the original PRI thereby 

achieving M times the unambiguous range. 

 
2.4.1 NLAS Code Selection.   

Using conjugate LFM pulses for diverse pulse coding does not readily extend to larger 

symbol families and thus is severely limited for M-channel (M > 2) NLAS applications.  

Larger families of optimal mutually dispersive codes with higher time bandwidth 

products are needed to achieve the desired M-fold range ambiguity reduction.  Consistent 

with Section 2.2.3, the PSL, ISL and PCCL are common metrics for quantifying ideal 

NLAS code characteristics.  Ideal NLS codes must exhibit good aperiodic autocorrelation 

and cross correlation performance (low sidelobes levels).   Symbol sets comprised of 

pseudo-random discrete codes, such as Gold codes, exhibit mutual dispersion properties 

[14] but are not optimum for NLAS.  Similarly, codes generated from combinatorial 

optimization methods, such as simulated annealing (SA), exhibit good dispersion 

properties yet are constrained by the inability to efficiently generate codes of longer 

length [14].  Given the inability to find optimal sets of discrete NLS codes, Brown’s 
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optimal mutually dispersive analog code development process will be considered next, as 

described in Section 2.5.  These codes are optimal in terms of the rms duration of the 

correlation functions and exhibit superior compression and dispersion properties. 

 
2.4.2 Adaptive Reserved Code Thresholding.   

Adaptive reserved code thresholding (ARCT) exploits code cross-correlation (dispersive) 

properties to provide maximum suppression of ambiguous clutter while having minimal 

impact on desired unambiguous responses.  In ARCT, one code is reserved (not 

transmitted) and used to adaptively “train” threshold shape (α[n]) and scale (β).  The 

hRsvd[n] of Figure 2-2 is the reserved code matched filter with output r[n] consisting 

exclusively of dispersed code responses, i.e., no autocorrelation effects are present since 

the reserved code was not transmitted.  ARCT shape α[n] is established as the maximum 

value of |r[n]| over a pre-defined interval of length K (IK).  The resultant α[n] is scaled by 

β to produce the final ARCT of γ[n] = β⋅α[n]. 
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Figure 2-3.  ARCT (Dashed Line) Overlaid on Dispersed Filter Response (Solid Line).  
Results for M = 3, 127-Length 16-SA Codes with β = 1 and K = 20. 

 

50 100 150 200 250 300 350 400

0.2

0.4

0.6

0.8

Sample Number (n)

N
or

m
al

iz
ed

 M
ag

ni
tu

de

1.0

γ[n] = β⋅α[n]

 

Figure 2-4.  ARCT of Figure 2-3 (Dashed Line) Overlaid on Focused Filter Response 
(Solid Line).  Results for M = 3, 127-Length 16-SA Codes with β = 1 and K = 20. 
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Figure 2-3 shows a representative ARCT (dashed line) overlaid on the hRsvd[n] response 

(solid line) used to generate it.  This γ[n] is for three M = 127 length 16-SA codes using 

K = 20, β = 1, and two coded signals centered at sample #101 and #328 to form 

ambiguous data.  In Figure 2-4 this γ[n] is overlaid on the hj[n] response containing one 

focused (matched) response at sample #328 and one dispersed response centered at 

sample #101.  ARCT γ[n] exhibits two desirable features: 1) it falls below the focused 

response causing maximum undesired energy suppression and 2) it effectively tracks the 

dispersed response causing minimal desired energy loss. 

 
 

2.5 Brown Symbol Design Process  

The following Brown symbol development process parallels [18].  The search for 

mutually dispersive codes begins by considering a pulse coded radar signal given by: 

( )∑ −=
−

=

1M

0k
k Tktf)t(x  (2-11)

where T is the Pulse Repetition Interval (PRI) and fk(t) has a Fourier transform of the 

form: 

ℜ∈= )(,)(Ae)(A)(F k
)(kj

k ωΦωωω ωΦ  (2-12)

The kth Matched Filter processed pulse return is represented as follows: 

)](k)(l[j
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*
klkl
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When k = l, the processed output represents a matched filter response whose inverse 

Fourier transform is the signal autocorrelation function (ACF), ρkk(t) given by:   

)t()(P kk

1

kk ρω
−ℑ

⇒  (2-14)

The NLAS process requires the ACF to be as compressed as possible and the 

crosscorrelation function (CCF) (mismatched filter response) to be as dispersed (flat) as 

possible.  The rms time duration of correlation functions, σlk as defined in (2-15), are 

used to quantify correlative dispersion [9:37].  This definition of σlk assumes ρlk(t) is 

normalized to unity energy and centered at t = 0; the dot operator (⋅) in (2-15) and (2-16) 

represents differentiation with respect to frequency. 
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(2-16)

For k = l in (2-16), σkk represents the ACF rms time duration and is purely a function of 

envelope A(ω) (second term of second equation identically cancels).  To achieve a 

maximally compressed ACF response, the first term of (2-16) is made as small as 

possible; this provides the impetus for designing optimal envelope A(ω) such that the 

ACF rms time duration , σkk is minimized.  Similarly, to achieve a large dispersed 

response, the CCF rms time duration, k ≠ l in, (2-16) is made as large as possible; the σlk 

dispersion has contributions due to both the envelope and the phase functions.  With the 
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envelope minimization constraint in place, the phase functions are designed to optimize 

the CCF rms duration.   

Optimality in compression and mutual dispersion is achieved using the following 

process [18]: 

1) For optimal compression, the envelope is derived from the solution to 

the following constrained optimization problem: 
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Using calculus of variations, a cosine envelope of the following form is 

derived: 

2
cos4)(A 0

00
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=  (2-18)

2) For M symbols, use any set of M maximally equidistant unit-vectors in 

M-dimensional space (hermits), C = [c0  c1  c2  … cM-1 ].   One solution to 

this hermit problem is defined as follows  [18]: 
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  3) Choose any set of odd basis functions given by 
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ϕ(ω) = [ϕ0(ω) , ϕ1(ω) , ϕ2(ω) , … , ϕ M - 1(ω)]T (2-20)

while satisfying spectral window orthonormality given by: 
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4) Describe M phase-rate functions of the form )()( ωG T
kDk ϕc=Φ

•

ω , 

where GD is a dispersive gain factor, (the dot above represents 

differentiation) yields phase functions of the form: 

∫=
ω

ωωωΦ d)(G)( T
kDk ϕc  (2-22)

5) Resultant time and frequency domain expressions for mutually 

dispersive codes are expressed as: 
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It can be shown that symbols designed using this process yield basis independent CCF 

rms time duration of: 
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If the optimal cosine taper envelope is used, the ACF rms time duration σkk becomes: 

o
kk

Ω
πσ =  (2-25)
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with relatively constant PSL of –23dB and ISL of –18dB at low bandwidth (Ω0 < 5000  

Rad/sec) simulations..  As the cosine taper bandwidth increases, the ACF rms duration 

decreases, compression improves and ISL levels should theoretically decrease [3].  
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CHAPTER 3.  METHODOLOGY 
 
 

3.1 Introduction 

Ambiguity suppression capability of the NLAS processing system hinges on the 

selection of codes which possess 1) good autocorrelation compression (focusing) with 

low integrated sidelobe levels and 2) maximum cross-correlation dispersion across all 

pulse codes within the code family [19].  This chapter describes various stages of the 

Brown symbol development process, including design, synthesis, and concept 

demonstration.  Section 3.3 outlines the motivation, symbol parameters, performance 

metrics, and validation techniques used for the Brown symbol design process.  

Section 3.3 addresses factors involved in transitioning from band limited, infinite time 

duration signals (as resulting from the Brown symbol design process) to realizable finite 

duration signals as obtained through temporal windowing.  Finally, Section 3.4 outlines 

the methodology used for demonstrating range ambiguity resolution using Brown 

symbols with a NLAS system.        

 
 

3.2 Brown Symbol Design Process  

The rms time duration of correlation functions is the optimization metric used for 

Brown symbol design.    Although cross-correlation performance of optimal mutually 

dispersive symbols, in terms of the rms metric, is independent of phase rate (or basis) 

function form, the symbol dispersive properties indicated by the peak cross-correlation 
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sidelobe metric is directly linked to phase rate function design.  Optimal mutually 

dispersive symbols for NLAS applications must exhibit good performance in cross-

correlation metrics, including high rms time duration and low PCCL.  Brown symbols 

generated from different basis functions may achieve equivalent rms time duration yet 

differ greatly in PCCL performance.  This divergence has paved the way for the design of 

“optimum” phase rate functions yielding minimal PCCL levels.   

 
 
3.2.1 Basis Function Constraints. 

Basis function selection is guided by the spectral window orthogonal properties exhibited 

by the function family.  The spectral windowing constraint in (2-21) is determined by the 

symbol’s correlation envelope in the frequency domain to obtain the finest possible 

resolution (in terms of rms metric) for specified system bandwidth [20].  Although many 

functions exhibit orthogonal spectral properties, the optimum cosine spectral window 

constraint in (2-18) “eliminates” them from being good candidates for basis functions.  A 

design trade-off can be made by relaxing the spectral window constraint (loss of 

resolution) to permit the use of other functions, i.e., Chebyshev, or to allow basis function 

implementations that are not orthogonal within the optimal cosine taper.  The impact of 

such a trade-off must be analyzed in terms of the resultant cross-correlation rms time 

duration and sidelobe metrics.  

  
 
3.2.2 Validating Symbol Design. 

By using the rms time duration metric, Brown symbol development effectively isolates 

the envelope A(ω) and phase-rate function components of the symbol in the spectral 
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domain as shown in (2-16).  If basis functions ϕi(ω) are designed using a “non-optimum” 

envelope with the prescribed design process, the cosine-specific compression expression 

of (2-25) is no longer valid but the basis invariant dispersion performance of (2-24) is 

maintained.  However, if the “non-optimum” envelope has jump discontinuities and/or 

the phase functions have discontinuities where the envelope is non-zero, the interchange 

used to derive (2-16) no longer holds [3].  Similarly, if Brown symbols are generated 

using basis functions designed for a “non-optimum” envelope and implemented with the 

cosine spectral envelope, the optimal compression in (2-25) is achieved but the basis 

invariant dispersion performance in (2-24) is compromised.  Although the basis 

independent dispersion performance is degraded with the envelope exchange 

implementation, the dispersive gain parameter GD can still be used to achieve the needed 

dispersion, albeit not equally affecting the cross-correlation between all the symbols. 

 
3.2.3 Benchmarking Symbol Performance. 

The time bandwidth (TB) product is proposed as a key metric for providing “equivalent” 

comparison of Brown symbol performance with LFM coded waveforms.  As indicated 

earlier, Brown symbols are windowed in the time domain since band limited signals have 

infinite duration in time and are unrealizable.  As a result, effective symbol time duration 

(σk) is used to guide the time windowing process such that ≥ 99.9% of the total signal 

energy is retained in time-windowed symbols.  This time duration and the intermediate 

frequency bandwidth of Brown symbols are used to calculate the TB metric.  

Performance of LFM coded waveforms is used as a benchmark since this coding 

approach provides “near optimal” baseline NLAS performance [14:4-19].  Both LFM and 
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Brown coded symbols are forms of analog coding (versus discrete) that are capable of 

achieving high pulse compression ratios.  The impact of design trade-offs relative to LFM 

provides a good baseline for comparing performance of Brown symbols generated with 

different basis functions. 

 
3.2.4 Parameters for Improving Cross-Correlation Characteristics. 

The Brown symbol design process clearly shows the impact of increased symbol 

bandwidth and dispersion on the rms duration of correlation functions in (2-24) and 

(2-25).  Improvement in the rms time duration metrics does not necessarily indicate 

improved sidelobe characteristics.  For example, although Brown symbol ACF 

compression improves with bandwidth, PSL levels remain relatively constant.  The 

invariant nature of the PSL metric is exhibited in LFM coded waveforms as well.  LFM 

PSLs remains constant at –13.23 dB (corresponding to a rectangular spectral window) 

with increased bandwidth; LFM waveform PSLs can be reduced by sub-sampling [12].  

Given the lack of a mathematical framework for capturing the impact of rms time 

duration and bandwidth on cross-correlation sidelobe metrics, the impact of increasing 

rms time duration (through dispersive gain) and bandwidth on symbol sidelobe 

performance is experimentally characterized.  The experimental process is constrained 

here by available computational resources which are quickly exhausted when attempting 

to simulate high bandwidth scenarios. 

 
Previous research results demonstrated improvements in the PCCL metric as dispersive 

gain GD increases across basis functions [18:4-14 to 4-28].  The measure of improvement 

was directly tied to the “nature” of the basis functions.  However, the impact of changing 
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bandwidth on PCCL was not completely developed nor understood.  This impact is 

characterized relative to basis function selection for symbols designed using the same 

specifications. 

3.3 Symbol Sensitivity to Time Windowing 

The dispersive gain parameter, GD, in Brown symbol design process provides the 

capability to improve cross-correlation rms time duration performance at the cost of 

spreading the signal in time.  Although the impulse-like qualities of the time signals are 

“flattened” by increasing cross correlation function variance, the associated time to 

transmit 99.9% of signal energy increases.  The effect of time windowing Brown symbols 

generated with various dispersive gains and bandwidths, and consequently varying TB 

product, is qualitatively analyzed in light of sideloble degradation.  Results from this 

analysis provide a heuristic approach to generating symbols best suitable for windowing.  

Given research time constraints, time windowing analysis was only performed for one 

type of basis (VS piecewise) and M = 4 symbols.  As summarized in Table 3-1, time 

windowing was performed with the following specifications of each scenario: 

1) dispersive gain GD value of 0dB (low) with Ωο (rad/sec) value of 8π (low) and 

resulting time bandwidth TB value of 7.15 (low), and 2) dispersive gain GD value of 

40dB (high) with Ωο (rad/sec) value of 8π (low) and resulting time bandwidth TB value 

of 563 (medium) and 3) dispersive gain GD value of 40dB (high) with Ωο (rad/sec) value 

of 40π (high) and resulting time bandwidth TB value of 1002 (high).  
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Table 3-1.  Experimental Scenarios for Testing Brown Symbol “Sensitivity” to Time 
Windowing. 

 Scenario 1 Scenario 2 Scenario 3 

GD 0 40 40 

Ω0 8π 8π 40π 

TB 7.15 563 1002 
 
 
 

3.4 NLAS Performance Using Brown Coded Waveforms 

After developing and characterizing an “acceptable” set of Brown coded 

waveforms, the ambiguity suppression capability of NLAS processing is demonstrated 

using the Brown coded waveforms.  The experimental scope is limited to demonstration 

and characterization of range ambiguity suppression capability for point target returns of 

diversely coded pulses.   Many detection techniques can provide for range resolution of 

point target returns, yet the capabilities are limited when the unambiguous target of 

interest is embedded in very strong ambiguous (interference) returns.  The NLAS range 

resolution capability in the presence of strong interference is bench marked to the 

traditional matched filter detection approach. 

  
3.4.1 System Components and Limitations 

The scenarios considered are not intended to demonstrate clutter suppression capability 

nor do they take into account the effects of complex, distributed target returns.  Fixed 

signal-to-noise (SNR) ratios and ambiguous signal power levels are also used.  The 

effects of SNR variation are not considered. 
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3.4.2 Constraints 

Scenario characteristics that remain constant throughout experimentation are defined as 

constraints.  The following constraints are maintained constant through all scenarios: 

a) Relative Signal-to-Noise Ratio (SNR):  The relative input SNR between 

unambiguous (desired) and ambiguous (undesired) signals is fixed at –24.5 dB for 

all experiments.  The noise power is held constant using a single noise realization 

for all simulated scenarios. 

b) Ambiguous Input Signal Specifications:  The number of ambiguous (undesired) 

input signals is fixed at two with each having +24.5 dB more power than the 

unambiguous (desired) input signal.  An arbitrary phase shift of ± 900 is applied to 

the ambiguous signals to induce signal propagation phase delay effects.  Signal 

powers are adjusted in each ambiguous signal to achieve SNR of 0.0 dB.  This 

condition is maintained throughout all scenarios.      

c) Symbol Time Bandwidth (TB) Product:  Symbol time bandwidth (TB) product 

is maintained at approximately 7100 for all coded waveforms employed in NLAS 

processing characterizations.  Although symbol parameters, other than the hermit 

weights, may vary independently, TB is maintained constant for all the symbols. 

d) Time Windowed Symbol Energy:  Brown symbols are generated having high 

TB and time windowed (truncated) such that their energy level is greater than 

99% of their total energy.  A high TB is used to minimize the impacts time 

windowing (truncation).  
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e) NLAS Thresholding:  An adaptive reserved code threshold (ARCT) is used for 

all NLAS processing involving Brown Symbols.  The only exception occurs when 

LFM coded waveforms are used due to the limited number of symbols (M = 2), 

since one symbol must be held in reserve for ACRT.  In the LFM scenarios, the 

NLAS processor uses a constant threshold value yielding the lowest threshold is . 

  
3.4.3 Factors  

Scenario characteristics that change throughout experimentation are defined as factors.  

The following factors were changed during the scenarios:   

a) Symbols Used for NLAS Processing:  Two types of coded waveforms 

(symbols) are used for NLAS characterization in various scenarios, including 

1) Brown symbols generated with various basis functions and 2) LFM symbols. 

b) Signal Detection Techniques:  Both conventional matched filtering and NLAS 

processing are used to detect the unambiguous (desired) signal response. 

c) Ambiguous Signal Response Locations:  A time delay is induced on each 

ambiguous (undesired) input signal as a means to vary correlation interference 

levels.  In one case, the time delay is zero for both ambiguous signals such that 

they completely overlap the unambiguous signal in time.  In the second case, a 

time delay of plus and minus one-half the pulse width is induced such that the 

ambiguous signals partially overlap the unambiguous signal in time. 
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3.4.4 Experimental Setup for NLAS Demonstration 

For NLAS ambiguity resolution demonstration, four uniquely coded, equal energy Brown 

symbols were generated.  The weaker unambiguous input signal sU(t) was created using 

symbol f0(t) and random noise n(t), as shown in (3-1), and ambiguous input signal sA(t) 

was created by adding two symbols to sU(t) as shown in (3-2).  The remaining symbol 

f3(t) was used by the NLAS processor to generate adaptive reserved code thresholds 

(ARCT) for suppressing ambiguous signal responses.  

( ) ( ) )t(ntfts 0U +=  (3-1)

( ) ( ) ( ) ( ) ℜ∈∈−+−+= k2211UA tC,,ttfttftsts βαβα  (3-2)

 
3.4.5 Performance Metrics and Collection Process  

Data from the metric collection process is used to accurately quantify NLAS ambiguous 

energy suppression capability relative to matched filter performance.  For comparison, 

the “noise floor” and various peak responses (energy levels) of the matched filter 

detection of f0(t), as depicted in Figure 3-1, are determined for the following scenarios: 

a) Best Case:  Only sU(t) of (3-1) is present 

b) Completely Overlapped Case:  sA(t) of (3-2) is also present with tk = 0 

c) Partially Overlapped Case:  sA(t) of (3-2) is also present with t1= -T and t2= T 

for T the symbol duration. 

Similarly, the “noise floor” and suppressed peak responses (energy levels) for NLAS 

processing is determined for the following scenarios: 

a) Best Case:  Only sU(t) of (3-1) is present and an ARCT is used 
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b) Coloration Scenario:  sA(t) of (3-2) is also present with tk = 0 (completely 

overlapped) and an infinite threshold is used.  The coloration is primarily 

introduced by the dispersion operation. 

c) Suppressed Scenario:  sA(t) of (3-2) is also present with tk = 0 (completely 

overlapped) and an ARCT is used 

d) Steps (b) and (c) are repeated for the partially overlapped scenario with t1= -T 

and t2= T for symbol duration T. 

Figure 3-1 summarizes the scenarios (for each interference level) for NLAS ambiguity 

suppression demonstration.  The “best case” response, i.e., the best response that can be 

achieved given no ambiguous signals are present, is used to normalize all other scenarios 

using the same processing scheme (MF or NLAS) for the following reasons: 

a) To characterize the effect of ambiguous signals on detection capability.  The 

ambiguous energy levels introduced in the correlation response must be 

quantified relative to detection in the no interference case. 

b) To quantify ARCT effectiveness in preserving the unambiguous signal. 
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Figure 3-1.  Scenarios for NLS Demonstration.  
 

Figure 3-2 depicts how model metrics are collected and used to quantify the 

NLAS suppression performance, relative to matched filtering. 
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Figure 3-2.  Metric collection process for NLS demonstration. 
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CHAPTER 4.  ANALYSIS AND RESULTS 
 
 

4.1 Introduction 

The root mean squared (rms) time duration of correlation functions is the corner 

stone metric of Brown symbol development.  Using the rms time duration metric of 

(2-15), Section 4.2 outlines the process for generating a new family of mutually 

dispersive Brown symbols that exhibit properties of the LFM chirp waveforms and 

sinusoidal functions.  

 
 

4.2 New Family of Brown Symbols 

To characterize performance of Brown symbols generated with a sinusoidal basis, 

a pair of LFM symbols having equivalent time bandwidth (TB) product is generated.  In 

this comparison, the Brown symbols exhibited equivalent or better performance in all 

areas except PCCL levels [18].  This shortfall led to the design of a new family of 

variable slope (VS) piecewise basis (phase rate) functions having LFM-like chirp 

characteristics while possessing the intrinsic orthogonal property of sinusoids. 

 
4.2.1 Variable Slope (VS) Piecewise Basis Functions.   

Basis function development begins by considering the following sinusoids within a 

normalized uniform spectral window: sin(t), sin(3t), sin(5t), and sin(7t).  The uniform 

spectral envelope provides for design of orthonormal basis functions satisfying (2-21) 

using systems of equations – ease of design..  Only the positive half of the spectral 
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window is considered during the actual development process since the basis functions 

ϕi(ω) are designed to have odd symmetry.  Basis function amplitudes vary between ± 1.  

The first VS piecewise basis function in the family, ϕ0(ω), is the traditional LFM up-

chirp as shown in (4-1).  Subsequent members are designed to be orthonormal to this 

function and all other family members.  Four family members of the VS piecewise basis 

may be represented as follows: 

10)(0 <<= ωωωϕ  (4-1)
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The parametric solution in Table 4-1 was generated by simultaneously solving (4-1) 

through (4-4) such that orthonormality is maintained between basis set members.  

Table 4-1.  Parametric Solution for Four Orthogonal VS Piecewise Basis Functions 
a 0.4142 

b 0.2094 

c 0.6602 

d 0.1849 

e 0.4547 

f 0.7314 
 
 
As the width of the uniform spectral window increases, these points are merely scaled by 

the appropriate maximum bandwidth.  After defining basis functions over the positive 

portion of the spectral domain, the odd symmetry of the functions is used to generate the 

negative spectral responses, i.e., functions generated using (4-1) through (4-4) with 

parameters of Table 4-1 are reflected about the origin to yield negative spectral 

responses.  The resultant basis function amplitudes are scaled such that they are 

normalized to unit energy.  As the number of desired symbols increases, the set of basis 

functions must be redesigned.  The linear combination of weighted VS basis functions 
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must satisfy (4-5) since these functions adhere to Brown’s basis specifications of (2-21) 

with A(ω) being a uniform spectral envelope.  Equation (4-5) is a rearrangement (2-24), 

where σkl
2 and σkk

2 are the variance of the cross-correlation function (CCF) and 

autocorrelation function (ACF), respectively, GD is a dispersive gain factor and M is the 

total number of symbols. 

1
222

−
=−

M
MGDkkkl σσ  (4-5)

 

4.2.2 Design Process Validation & Symbol Characterization 

To validate the Brown symbol design process, the following data was collected using 

Brown symbols based on the new VS piecewise basis functions.  Figure 4-1 shows the 

phase functions generated from (4-1) through (4-4) using parameters of Table 4-1.  The 

Φ0(ω) phase function is similar to an LFM parabolic phase function, with  “distortions” 

introduced from the linear combination of the basis functions and weighting factors 

associated with hermits and dispersive gain.  The distortions are necessary to make the 

symbols maximally dispersive within the extended family of symbols.  The resultant 

correlation functions in the time are shown in Figure 4-2.  The –13.3 dB sidelobe 

response of the ACF, ρ00 (t), is characteristic of a uniform spectral taper.  The CCF plots 

exhibit the desired “flat” correlation responses with low PCCL levels       
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Figure 4-1.  Phase Functions for VS Piecewise Basis. 
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Windowed Brown symbols (magnitude shown) containing 99.9% of the original energy 

are shown in Figure 4-3.  The rms time duration of the time signal, σk, is used to guide the 

truncation process;  4.4σk of f(t) was used for these results.   
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Figure 4-3.  Windowed Brown Symbols Containing 99.9% energy 
 
Table 4-2 summarizes the metrics collected from these Brown symbols. 

 
Table 4-2.  Brown Symbol Performance: VS Piecewise Basis Functions with Uniform 

Spectral Taper. 
Metrics  

Bandwidth 200π 
Dispersive Gain 10 

PSL -13.31 dB 
ISL -7.12 dB 

PCCL -22.5 to –25.9 dB 
σkk

2 16.9×10-2 sec
σkl

2 26.83 sec  
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Notice that (4-5) is satisfied using the collected metrics for the uniform taper envelope, 

thus validating the orthonormal basis design accuracy.  Unlike the ACF compression 

expression derived for the cosine taper envelope in (2-25), a closed-form solution of the 

square taper compression is unlikely to exist.  Moreover, the jump discontinuities in the 

uniform taper envelope endpoints will not allow the interchange in (2-16).  The ISL 

performance of the uniform taper at - 7.12dB is marginal compared to the cosine taper 

ISL level of –18.84dB.  Low ISL, which signifies higher energy concentration in the 

mainlobe compared to the sidelobes, is critical to effective energy suppression in the 

NLAS system.  Consequently, the VS piecewise basis functions, which were designed to 

be orthonormal in a uniform taper, is implemented with a cosine taper during the symbol 

generation process.  The performance of symbols generated with the envelope exchange 

implementation is shown in Table 4-3. 

Table 4-3. Brown Symbol Performance: VS Piecewise Basis Functions with Cosine 
Spectral Taper. 

Metrics  
Bandwidth 200π 

Dispersive Gain 10 
PSL -23.04 dB 
ISL -18.84 dB 

PCCL -20.5 to –25.0 dB 
σkk

2 2.5×10-5 sec
σkl

2 5.96 to 26.93 sec  
   
Two outcomes result from the envelope exchange implementation, including 1) improved 

ACF characteristics and 2) degradation of the equally mutually dispersive nature as 

indicated by a CCF rms metric decrease.  As expected, the ACF of symbols generated 

with the cosine taper exhibit superior sidelobe and rms compression performance 

compared to the rectangular taper.  However, the uniform-to-cosine taper exchange 
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couples the dispersion performance to properties of the basis functions within the 

implemented envelope; a natural result since VS piecewise basis functions were 

specifically designed using a uniform taper but implemented with a cosine envelope.  As 

a result, (4-5) no longer governs system performance, i.e., for a given number of symbols 

M and dispersive gain GD, the “hermit weights” are no longer the only factor affecting 

cross-correlation rms duration σkl
2. 

 
4.2.3 Benchmarking Symbol Performance 

Performance of the “new” VS piecewise-based Brown symbols is benchmarked relative 

to the performance of LFM symbols having the same time bandwidth (TB) product.  A 

summary of correlation statistics is shown in Figure 4-4.   
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Results in Figure 4-4 seem to indicate that VS piecewise-based Brown symbols provide 

better target resolution in a “noiseless” environment.  This is characteristic of the lower 

compression metric σkk
 and PSL levels.  In terms of PCCL levels, VS piecewise-based 

Brown symbol performance is poorer by approximately 7.5 dB.  However, this 

performance represents a 4.5 dB improvement over sinusoidal-based Brown symbols.       

In other words, sinusoidal-based Brown symbols performed 12.0 dB poorer than LFM at 

an equivalent TB.  As indicated in Figure 4-4, LFM symbols achieve superior 

performance in terms of σkl .  However, the dispersion for VS piecewise-based Brown 

symbols is degraded from optimal due to the envelope exchange.  If the VS piecewise 

basis functions had been originally designed using a cosine spectral taper, the dispersion 

would be equal to that of the LFM symbols.  The sinusoidal-based Brown symbols 

provide performance on par with LFM symbol in terms of σkl duration.  

 
4.2.4 Impact of Varying Bandwidth on PCCL levels 

Performance improvement of the chirp-like basis family over the sinusoidal functions is 

not readily apparent at low bandwidth.    While holding the dispersive gain at GD =1, as 

symbol bandwidth increases for both basis, σkk
 improves, σkl degrades slightly and PSL 

and ISL remain constant.  However, the PCCL metric changes differently for each basis 

as shown in Figure 4-5. For the VS piecewise basis, the lower PCCL with increasing 

bandwidth provides insight into the “flatness” of f(t) in the time domain.  For the 

sinusoidal basis, the higher constant PCCL level with increasing bandwidth signifies 

“impulse like” concentrated energy levels in f(t).  At low dispersive gains, the sinusoidal  
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Figure 4-5. Effect of Changing Bandwidth on PCCL Metric with GD = 1. 
 
basis functions tend to generate time signals having impulse like properties.  Yet, this 

effect is not accurately captured in the rms time duration of correlation functions.  The 

design of chirp-like basis functions provides an added parameter (bandwidth) for 

controlling PCCL levels.  The performance improvement gained by increasing bandwidth 

comes without an increase in required transmit time to capture 99.9% of the symbol 

energy.  Although an increase in dispersive gain GD also improves PCCL levels, it further 

increases the equivalent time duration of the signal.  Improvements resulting from 

varying the bandwidth are achieved at the cost of slightly degrading the mutually 

dispersive symbol properties; increasing GD can enhance the dispersive symbol nature. 
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4.2.5 Comparison of VS Piecewise Basis with CS Piecewise Basis     

VS piecewise basis performance is compared to constant slope (CS) piecewise basis of 

the following form [18:4-24]: 
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(4-6)

 

where kk a/0ΩΩ = , and ( )1
2

0 −= kn a/nΩ
ω .  The variable ak is the number of cycles 

over the intermediate frequency bandwidth Ω0, Ωk is the period and ωn are zero crossings 

of the basis functions.  Once again, this basis functions set was designed using a uniform 

spectral envelope but is implemented with a cosine spectral taper.  Representative CS 

piecewise basis performance, relative to LFM, is shown in Figure 4-6.  A comparison of 

Figure 4-4 VS piecewise results with Figure 4-6 CS piecewise results reveals relatively 

equivalent performance when using LFM as the benchmark.  However, the dispersive 

nature of CCF rms duration, σkl, for the VS piecewise based symbols is marginally 

superior to the CS piecewise based symbols.  This is a testament of the coupling effect 

between basis function selection and the dispersion exhibited in the envelope exchange 

implementation.  As in the VS piecewise basis case, the CS piecewise basis also provides 

lower PCCL with increasing bandwidth. 
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4.3 Symbol Sensitivity to Time Windowing 

The rms time duration (σk) of Brown symbols is the key metric that guides the 

windowing process.  This metric provides a measure “spread” in time domain signal f(t), 

whereas σkl characterizes the spread of the correlation functions.  Although the 

correlation function rms duration (σkl) is designed to be equal across the choice of basis 

functions, the σk is not equal.  The resultant Brown Symbols are centered at t = 0 and 

normalized by the symbol energy before the windowing (truncation) process is applied.  

Relative window size for truncation varies with the number of symbols generated, 

dispersive gain, bandwidth and the basis function choice for generating the Brown 

Symbols.  For generating M = 2 symbols with the sinusoidal piecewise basis functions at 
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Ω0  = 8π, a window duration of at least 6σk of the time function is needed to capture 

99.9% of the energy [18] at various dispersive gains.  For the VS piecewise based Brown 

symbols, the relative window size is shown in Figure 4-7 for the same specifications.  

The effect of increasing the frequency extent to Ω0 = 40π while keeping all the other 

parameters constant is also shown on the Figure 4-7.  If bandwidth is held constant and 

dispersive gain GD increased, the window size needed to capture 99.9% of the energy, in 

terms of σk, decreases.  Although increasing GD increases the signal time duration, the 

impulse-like qualities of the signal are flattened out and the signal is more suitable for 

windowing.  When bandwidth is increased in the same scenario, the signal time duration 

shortens and amplitude increases.  Yet, the dispersive gain counteracts this effect and 

improves the relative “compactness” of the signal in comparison to symbols generated at 

lower bandwidths.  Symbols generated with large dispersive gains and large bandwidths 

are ideal candidates for time windowing.” 
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As dispersive gain GD increases, the time associated with a window capturing 

99.9% of the total energy increases.  This increased time duration may pose a problem in 

applications requiring shorter transmit times.  In such a situation, one needs to understand 

the impact of time windowing symbols below the 99.9% energy level.  The impact of 

time windowing is characterized in terms of signal spectral response and sidelobe metrics 

of the truncated symbol.  Figure 4-8 shows the impact of truncating the energy below the 

99.9% level to 86.5% using the following parameters:  Ω0  = 8π, GD = 1, M = 2 and the 

VS piecewise basis with a cosine spectral taper.   
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Ω0  = 8π, GD = 1 and M = 2.  (a) σk[Tw/2] = 4.7 for Energy = 99.9% and  

(b) σk[Tw/2] = 1.385 for Energy = 86.5% 
 

As time windowing is applied and energy levels are reduced, the symbol spectral 

response evolves from a cosine taper to a rectangular-like taper and the desired ACF and 

CCF sidelobe properties degrade.  Specifically, the ACF main lobe width increases 

(poorer resolution) while its sidelobes experience a constructive-destructive process.  The 

impact of truncating Brown symbols generated with a high dispersive gain is illustrated 

in Figure 4-9.  Relative to data presented in Figure 4-8, all symbol specifications are 

maintained except GD  = 40 dB is used. 
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Figure 4-9.  Windowed Brown Symbol, VS Piecewise Basis, Cosine Spectral Taper with 
Ω0  = 8π, GD = 40 dB, M = 2.  (a) σk[Tw/2] = 4.7 for Energy = 99.9% and  

(b) σk[Tw/2] = 1.385 for Energy = 86.5% 
 
From the symbol spectral envelope perspective, Fk(ω) in Figure 4-9, the truncation has 

introduced sinusoidal structure across a narrower spectrum.  The ACF ρ00(τ) experiences 

some degradation in resolution and sidelobe levels, yet the overall structure is 

maintained.  Likewise, the CCF ρ01(τ) experiences minimal degradation and maintains 

good dispersive characteristics. The next scenario compares the effect of truncating VS 

piecewise-based Brown symbols generated using higher bandwidth and dispersive gain.  

In this case, the bandwidth is changed to Ω0  = 40π with GD = 40dB and representative 

results are shown in Figure 4-10. 
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Figure 4-10. Windowed Brown Symbol, VS Piecewise Basis, Cosine Spectral Taper with 
Ω0  = 40π, GD = 40 dB, M = 2.  (a) σk[Tw/2] = 4.7 for Energy = 99.9% and  

(b) σk[Tw/2] = 1.385 for Energy = 86.5% 
 

The ACF exhibits better compression than the previous cases since bandwidth is 

increased.  Similar performance improvement in PCCL is realized with increasing 

bandwith.  With truncation to the 86.5% energy level, spectral response Fk(ω) exhibits 

a similar rippling effect as experienced in the previous Ω0  = 8π, and GD = 40 dB case.  

The ACF properties appear most sensitive to truncation, exhibiting a wider main lobe and 

higher sidelobe levels.  The CCF in this case experiences similar minimal degradation as 

the previous scenario 

 
In each of the time windowing scenarios, the symbol properties changed.  The 

ACF sidelobe properties were most sensitive to truncation.  Consequently, symbols must 

be generated at high bandwidth to accommodate the degradation in resolution 

encountered with the truncation.  The energy level for windowing must be determined at 
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the application level and guided by the metrics of interest.  The symbol design process 

provides flexibility to tailor symbol properties to meet specific requirements.  

 
 

4.4 Nonlinear Ambiguity Suppression (NLAS) Performance 

For NLAS concept demonstration, four uniquely coded, equal energy Brown 

symbols were generated.  An unambiguous input signal sU(t) was created using symbol 

f0(t) and random noise n(t), as shown in (4-7), with signal and noise power levels adjusted 

to achieve a –24.4 dB signal-to-noise ratio (SNR).  Likewise, an ambiguous input signal 

sA(t) was created by adding two symbols to sU(t) as shown in (4-8).  Signal power levels 

in f1(t) and f2(t) were adjusted to achieve a 0 dB SNR – the ambiguous signal power 

levels are +24.4 dB above the unambiguous signal power.  The remaining symbol f3(t) 

was used by the NLAS processor to generate adaptive reserved code thresholds 

(ARCT) for suppressing ambiguous signal responses [14:2-35]. 

( ) ( ) )t(ntfts 0U +=  (4-7)

 

( ) ( ) ( ) ( ) ℜ∈∈−+−+= k2211UA tC,,ttfttftsts βαβα  (4-8)

 
The NLAS system performance is analyzed relative to symbol properties and 

NLAS effectiveness.  At the symbol level, the effects of noise on correlation properties 

and the detection capability of unambiguous responses at two different correlation 

interference levels is analyzed.  Similarly, at the NLAS processing level, the suppression 

of ambiguous energy levels and processing “overhead” is characterized.  Performance is 
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bench marked relative to matched filtering.  The NLAS analysis is conducted for Brown 

symbols generated with the new VS piecewise basis, the original CS piecewise basis, the 

sinusoidal basis and LFM.  An equivalent time bandwidth (TB) product is used in all 

cases to establish “equivalence” in the symbol generation process.  Time windowing is 

performed such that symbols possess 99.9% of the total energy.  Given there are only two 

LFM symbols available for testing, a constant threshold (versus an ARCT) is used for 

LFM processing. 

 
4.4.1 Symbol Specifications for NLAS Demonstration 

Correlation statistics for the VS piecewise-based Brown symbols are shown in Table 4-4 

with corresponding plots in Figure 4-11.  The time functions, or Brown symbols, used for 

NLAS demonstration are shown in Figure 4-12.   

 

Table 4-4.  Correlation Statistics: VS Piecewise-Based Brown Symbols, M = 4, 
E = 99.9%, GD = 10 dB, TB = 7099 and Ωo= 1058π 

 PSL 
(dB) 

ISL 
(dB) 

PCCL 
(dB) σkk

2 σkl
2 

ρ00(τ) -23.161 -18.901 - 8.93×10-7 - 
ρ11(τ) -23.161 -18.901 - 8.93×10-7 - 
ρ22(τ) -23.161 -18.901 - 8.93×10-7 - 
ρ33(τ) -23.161 -18.901 - 8.93×10-7 - 
ρ01(τ) - - -27.073 - 5.960 
ρ02(τ) - - -30.646 - 13.972 
ρ03(τ) - - -30.779 - 26.927  
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Figure 4-11.  Brown Symbol Correlations, VS Piecewise Basis, for M = 4, E = 99.9%, 
GD = 10 dB, TB = 7099 and Ωo= 1058π  
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4.4.2 Symbol Performance:  Noisy Channel with Matched Filter Detection 

The effect of additive noise on the correlation properties of f0(t) is analyzed by correlating 

sU(t) of (4-8) with f0(t) of Fig. (4-12), resulting in the matched filter response at      

SNR= -24.4 dB.  Performance in a noisy channel provides an indication of ACF 

robustness when no ambiguous returns are present.  The MF noisy channel response 

(solid line) shown in Figure 4-13 represents a “best case” scenario, i.e., the best response 

that can be achieved given no ambiguous signals are present.  The noiseless ACF 

response (dashed line) is presented for reference.  As ambiguous returns are introduced, 

the autocorrelation response would theoretically deteriorate from that shown in the figure.  

The range resolution afforded by the MF response in the noisy channel reflects minimal 

degradation for the noiseless case, i.e., the compressed pulse time duration at -4.0 db 

points of the dotted and solid lines is approximately equal.  As indicated, PSL levels have 

increased by approximately 6.0 dB and the correlation response (solid line) outside the 

main lobe has much higher energy levels for time delays extending beyond the main lobe.  

The nature of the PSL levels changes based on noise realizations. 
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Figure 4-13.  Matched Filter Noisy Channel Response for SNR = -24.4 dB (Solid Line) 
and Noiseless Autocorrelation Response (Dashed Line)  

 

The MF noisy channel response of Figure 4-13 is redrawn in Figure 4-14 using a wider 

time delay scale to illustrate the correlation “noise floor” and “detection capability”, ∆D, 

of the MF response.  The detection capability is the difference between the normalized 

(to “best case” peak response) response at τ  = 0 and the correlation noise floor.  As 

indicated, the MF response exhibits a  ∆D of 12.10 dB.  
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Figure 4-14.  Matched Filter Noisy Channel Response for SNR = -24.4 dB with 
Correlation “Noise Floor” Indicated by Dashed Line 

 
4.4.3 Interference Effects on Matched Filter Detection Performance 

The next step in the symbol analysis process involves introduction of ambiguous signal 

responses per (4-8) (each scaled such that they are +24.4 dB above the desired 

unambiguous signal) and matched filtering (correlating) f0(t) with sA(t).  In the first 

ambiguous case, the ambiguous responses are completely overlapped with the signal of 

interest by setting tk = 0 in (4-8).  The resultant MF response is shown in Figure 4-15 

where the data has been normalized by the peak response of the best case MF scenario 

presented in Figure 4-14; this normalization is introduced to show the effective increase 

in the correlation “noise floor” (energy levels).  The detection capability, ∆D, is the 

difference between the normalized (to “best case” MF peak response) response at τ  = 0 

and the correlation noise floor.  As indicated, the MF response with ∆D = - 1.42 dB does 

not have a clearly discernable peak which can be attributed to the desired unambiguous 
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signal, i.e., the unambiguous signal is undetectable by simple matched filtering; the 

“negative” sign implies that the cross correlation levels are higher than the response of 

interest.  
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Figure 4-15.  Match Filter Response for Completely Overlapping Ambiguous Scenario – 
Two Ambiguous Signals Present at +24.4 dB above Unambiguous Signal.  

 
Although the VS piecewise-based Brown symbols were designed with PCCL’s of 

approximately -30 dB, the +24.4 dB power differential between f0(t) and βf2(t) has 

increased the PCCL of ρ02(τ) to effectively -6.0 dB.  Similarly, the effective PCCL of 

ρ01(τ) has increased to -3.0 dB.  These higher effective cross-correlation levels raise the 

-12.10 dB peak correlation “noise floor” of Figure 4-14 to the 0.575 dB level illustrated 

in Figure 4-15, rendering the match filtering process totally ineffective for detecting the 

signal of interest.  Ideally, the MF response at the τ  = 0 in Figure 4-15 should only 

contain contributions from the unambiguous focused response of f0(t).  Given the Brown 
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symbols are designed to be mutually dispersive in terms of their cross-correlation 

responses, f0(t) with f1(t) and f0(t) with f2(t), the MF response of Figure 4-15 should 

contain minimal ambiguous energy atτ = 0; the +24.4 dB power differential of this 

scenario has mitigated all advantage provided by matched filtering. 

 
In the second ambiguous case considered, cross-correlation interaction and interference 

levels are controlled by partially overlapping the unambiguous and ambiguous signals.   

This is done by adjusting ambiguous signal time delays such that t1 = 0.5T and t2 = -0.5T 

in (4-8) where T is the transmitted pulse duration.  Ambiguous signal power levels were 

maintained from the previous case at +24.4 dB above the desired unambiguous signal 

level.  The MF response to the ambiguous signal in this case is shown in Figure 4-16.  

The MF autocorrelation response of f0(t) at τ  = 0 still contains contributions from αf1(t) 

and βf2(t), yet the cross-correlation energy available from each ambiguous symbol for the 

“combined” process is less than the previous overlapped case.  Given the complex nature 

of the processing involved, there is no way of predicting that the response at τ  = 0 will 

be more or less strong than the first case.  As indicated in Figure 4-16, the peak 

correlation “noise floor” has decreased to -2.90 dB and the compressed response for f0(t) 

is more visible with detection capability ∆D  = 4.04 dB.  If the ambiguous cross-

correlation responses were completely flat (ideal design), the correlation “noise floors” of 

the displaced and completely overlapping scenarios would be approximately equal.  If the 

unambiguous and ambiguous signals are not overlapped at all, the MF process can 

effectively detect the unambiguous response as a function of received SNR. 
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Table 4-5 is a summary of the MF responses for the VS piecewise-based Brown symbols; 

No Detectable Response (NDR) is referenced in the table to categorize filter responses 

without a discernable peak. 
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Figure 4-16.  Match Filter Response for Partially Overlapping Ambiguous Scenario – 
Two Ambiguous Signals Present at +24.4 dB above Unambiguous Signal. 

       

Table 4-5.  Summary: MF Response for VS Piecewise-Based Brown Symbols 

Metrics 
Noiseless 
Channel 

Noisy 
Channel 

Best Case

Noisy 
Channel 

tk = 0 

Noisy 
Channel 

 tk = ±0.5T 

Resolution (Sec) 2.57×10-3 2.44×10-3 NDR NDR 
PSL (dB) -23.16 -17.45 - - 

“Noise Floor” (dB) - -12.10 0.58 -2.90 
Peak Response at τ = 0 (dB) 0.00 0.00 -2.00 1.14 

∆D  (dB) 23.16 12.10 -1.42 4.04  
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4.4.4 NLAS Performance in Noisy Channel 

A “best case” NLAS performance baseline is first established by applying the 

unambiguous signal sU(t) of (4-8) to an NLAS processor channel dedicated to isolating 

the unambiguous response.  As in previous testing, the SNR sU(t) was maintained at 

-24.4 dB.  The resultant “best case” output represents the expected NLAS output under 

ambiguous signal sA(t) input conditions with the NLAS processor perfectly removing 

ambiguous signal responses.  To generate the “best case” results with sU(t) as the input, 

the NLAS processor uses a constant “infinite” threshold to ensure no energy (only 

desired energy is present) is hole-punched during NLAS processing.   A comparison of 

the “best case” output with the MF output provides a “finger print” (coloration effects) 

for the NLAS processor.  The final channel output from the “best case” scenario is used 

as a benchmark for system.  Comparison of subsequent NLAS results with “best case” 

performance provides a means for determining how much desired (unambiguous) energy 

is lost and how much undesired (ambiguous) energy remains in the final NLAS processor 

output.    The “best case” NLAS system benchmark is shown in Figure 4-17 along with 

the noiseless channel ACF (dotted line) for reference. 
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Figure 4-17.  “Best Case” NLAS Performance for SNR = -24.4 dB, VS Piecewise-Based 
Brown symbols, Infinite NLAS Threshold. 

 
 

As indicated in Figure 4-17, NLAS processing clearly impacts ACF resolution, even 

under these “best case” conditions.  This degradation (coloration) is primarily introduced 

by the focusing and defocusing filter operations within the NLAS process since the 

additive channel noise mainly affects sidelobe structure.  Although the width of the main 

lobe has increased, the PSL level remains at –23 dB.  The “best case” NLAS response is 

redrawn using a larger time scale in Figure 4-18 and exhibits a correlation “noise floor” 

of -10.5 dB with detection capability ∆D of –10.50 dB. In all the NLAS scenarios, the 

detection capability is the difference between the normalized (to “best case” NLAS peak 

response) response at τ  = 0 and the correlation noise floor.  The MF correlation “noise 

floor” shown in Figure 4-14 is -12.05 dB, or 1.55 dB lower the “best case” NLAS 

response. 
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Figure 4-18.  Correlation “Noise Floor” for “Best Case” NLAS Performance with 
SNR = -24.4 dB, VS Piecewise-Based Brown Symbols, Infinite NLAS Threshold. 

 
4.4.5 Interference Effects on NLAS Detection Performance 

After benchmarking NLAS performance with the “best case” scenario, the completely 

overlapped ambiguous signal sA(t), tk = 0 in (4-8) per previous testing, was input into the 

NLAS processor.  NLAS processing coloration is established using sA(t) as the input 

signal and the threshold set to “infinity” such that no NLAS suppression occurs.  This 

output provides an indication of ambiguous energy in the system as induced by symbol 

correlation properties and filter coloration.  The resultant NLAS unsuppressed output for 

the completely overlapped ambiguous input scenario is shown in Figure 4-19. The 

difference between the peak correlation level at τ ≠ 0 in the unsuppressed output and the 

suppressed output is used to quantify the ambiguous energy suppression performance of 

the NLS system.   
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Figure 4-19.  NLAS Unsuppressed Output (Infinite Threshold) for Completely 
Overlapped Ambiguous Input.   

 
 
As indicated in Figure 4-19, the peak correlation “noise floor” is at 2.75 dB and the peak 

response is undetectable with a ∆D  = –3.25 dB   The “noise floor” has contributions from 

symbol correlation interactions and processor filter coloration.  A comparison of the 

correlation “noise floor” of Figure 4-19 with the corresponding MF response in 

Figure 4-15 indicates a 2.18 dB change (coloration) in the ambiguous energy response.  

Finally, sA(t) is applied to the NLAS processor with adaptive reserved code thresholding 

applied.  The NLAS suppressed output with adaptive thresholding applied is shown in 

Figure 4-20.  As indicated, the correlation “noise floor” of the NLAS suppressed 

response is at -10.75 dB.  The difference between the NLS “best case” peak (0 dB) and 

normalized suppressed response at τ = 0 is introduced as ∆P, the ACRT processing cost.  

A negative quantity in this metric indicates the hole-punching of “good” responses during 
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the ACRT operation.  Similarly, a positive quantity for ∆P is representative of ineffective 

suppression of ambiguous responses.  As indicated in Figure 4-20, 0.75 dB of the 

unambiguous signal was lost during the thresholding process.  
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Figure 4-20.  NLAS Suppressed Output (Adaptive Reserved Code Threshold) for 
Completely Overlapped Ambiguous Input.   

 
Following the MF interference analysis process of Section 4.4.3, cross-correlation 

interaction and interference levels are controlled by partially overlapping the 

unambiguous and ambiguous signals.   The change in interference level is simulated by 

by adjusting ambiguous signal time delays such that t1 = 0.5T and t2 = -0.5T in (4-8) 

where T is the transmitted pulse duration.  The NLAS response to (4-8) without NLAS 

suppression applied is shown in Figure 4-21.   



 

 4-32

-10 -8 -6 -4 -2 0 2 4 6 8 10
-20

-15

-10

-5

0

5

N
L

S 
Fi

lte
r 

R
es

po
ns

e 
[d

B
]

Time Delay (τ) [Sec]

Correlation Noise Floor Response Level at τ=0

∆D= 1.72 dB

Figure 4-21. NLAS Unsuppressed Output (Infinite Threshold) for Partially Overlapped 
Ambiguous Input. 

 
As indicated in Figure 4-21, the peak correlation “noise floor” is at -1.02 dB with a 

detection capability ∆D = 1.72 dB.  Even with the displacement in ambiguous signal 

locations (varying interference levels), the contributions forming the ambiguous peaks 

(and filter coloration) in the autocorrelation response of f0(t) at τ = 0 is evident with a 

peak response of 0.70 dB above the “NLAS Best Case”.  The NLAS suppressed output, 

using adaptive reserved code thresholding, for the partially overlapping ambiguous input 

signal is shown in Figure 4-22.  As indicated, the peak correlation “noise floor” is now at 

–11.25 dB and the desired unambiguous response is clearly visible.      
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Figure 4-22. NLAS Suppressed Output (Adaptive Reserved Code Threshold) for 
Partially Overlapped Ambiguous Input, Normalized by NLAS “Best Case” Response.   

 

4.4.6 NLAS Processing Cost 

A comparison between the NLAS “best case” and final NLAS system response to sU(t), 

in both the completely and partially overlapped scenarios, is considered.  Differences 

and/or similarities resulting from this analysis help characterize the NLAS effectiveness 

when using adaptive reserved thresholding – effectiveness is fundamentally driven by 

symbol cross correlation characteristics.  Thresholding effectiveness is determined by the 

ability to hole-punch (null-out) as much undesired focused energy as possible while 

simultaneously retaining as much dispersed signal as possible.  The final NLAS system 

response for the completely overlapped ambiguous signal scenario, along with NLAS 

“best case” results, is show in Figure 4-23.  The difference in the peak responses at τ = 0 

is 0.75 dB, indicating the final energy in the desired response due to f0(t) at the NLAS 
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suppressed output is only marginally reduced relative to “best case” performance – 

desired unambiguous f0(t) signal energy was well-preserved throughout the NLAS 

suppression process and minimal energy was “lost.”     
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Figure 4-23.  NLAS Comparison: “Best Case” (Dashed Line) versus Suppressed NLAS 
Performance (Solid Line) for Completely Overlapped Ambiguous Input 

 
An equivalent comparison was made for the partially overlapped ambiguous input with 

results presented in Figure 4-24.  In this case, the difference in the peak responses at τ = 0 

is only 0.33 dB, once again indicating that the final energy in the response due to f0(t) at 

the NLAS suppressed output is only marginally reduced relative to “best case” 

performance.  A summary of NLAS processing results and associated metrics for 

ambiguous cases using VS piecewise-based Brown Symbols is provided in Table 4-6.   
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Figure 4-24. NLAS Comparison: “Best Case” (Dashed Line) versus Suppressed NLAS 
Performance (Solid Line) for Partially Overlapped Ambiguous Input 

 

Table 4-6. NLAS Output Summary: VS Piecewise-Based Brown symbols with Channel 
SNR = -24.4 dB  

Metrics 

 
“Best 
Case” 

No 
NLAS
tk = 0 

 

With 
NLAS 
tk = 0 

 

No 
NLAS 

 tk = ±0.5T 
 

With 
NLAS 

 tk = ±0.5T 
 

Resolution (Sec) 3.53×10-3 NDR 3.73×10- 3.52×10-3 3.86×10-3 
PSL (dB) -23.00 - -16.12 -13.42 -17.70 

“Noise Floor” (dB) -10.5 2.75 -10.75 -1.02 -11.25 
Ambiguity Supp. - - 13.50 - 10.23 

Peak Response (dB) 0.00 -0.50 -0.75 0.70 -0.33 
∆D (dB) 10.5 -3.25 10.00 1.72 10.92 
∆P (dB) - - -0.75 - -0.33  
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4.4.7 NLAS Performance for Other Symbols 

NLAS performance using LFM, sinusoidal-based Brown symbols and CS piecewise-

based Brown symbols is documented in the following manner: 

a) LMF symbol specifications are shown in Table 4-7 with associated MF and 

NLAS response statistics provided in Table 4-8 and Table 4-9, respectively 

b) Sinusoidal-based Brown symbol specifications are shown in Table 4-10 with 

associated MF and NLAS response statistics provided in Table 4-11 and 

Table 4-12, respectively. 

c) CS piecewise-based Brown symbol specifications are shown in Table 4-13 

with associated MF and NLAS statistics provided in Table 4-14 and Table 

4-15, respectively. 

In general, the following performance trends were observed across all symbols employed 

in the NLAS system: 

a) NLAS processing provided for an average of +8.50 dB improvement in signal 

detection performance for the completely overlapped scenario and +6.39 dB 

for the partially overlapped scenario compared to traditional MF. 

b) Piecewise-based Brown symbols provided equivalent detection performance 

to LFM waveforms with NLAS processing.  LMF performance was superior 

to Brown symbols using traditional MF. 

c) Range resolution performance degraded with NLAS processing resulting from 

coloration induced by the focusing-defocusing operation. 
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d) ARCT operation effectively preserved the unambiguous response of interest 

with worst case lost at -0.75 dB.  Similarly, the hole-punching operation 

effectively removed undesired signals with worst case being +0.29 dB; if the 

undesired signals were completely removed a 0 dB suppressed peak response 

would be ideally realized. 

e) The NLAS technique effectively suppressed ambiguous energy levels in all 

the processed waveforms.  The suppression performance improved with 

introduction of ambiguous responses for all symbols employed in the system, 

with the exception of sinusoidal based Brown symbols.    

 

A comparative summary of the symbol performance is shown in Table 4-16 to 

Table 4-18.   
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Table 4-7.  Correlation Statistics of LFM symbols: M = 2, E > 99%, TB = 7093, 
Ωo = 1058π 

 

 PSL 
(dB) 

ISL 
(dB) 

PCCL 
(dB) σkk

2 σkl
2 

ρ00(τ) -13.31 -6.83 - 2.68×10-3 - 
ρ11(τ) -13.31 -6.83 - 2.68×10-3 - 
ρ01(τ) - - -38.96 - 59.98  

 

Table 4-8.  Matched Filter Response for LFM Symbols 
 

Metrics Noiseless 
Channel 

Noisy 
Channel 

Best Case

Noisy 
Channel 

tk = 0 

Noisy 
Channel 

 tk = ±0.5T 

Resolution (Sec) 1.89×10-3 1.99×10-3 2.39×10-3 1.89×10-3  
PSL (dB) -13.31 -15.77 -6.92 -8.35 

“Noise Floor” (dB) - -12.54 -6.66 -6.65 
Peak Response at τ=0 (dB) - 0.00 1.57 1.83 

∆D  (dB) - 12.54 8.23 8.48  
  
 

Table 4-9.  NLAS Output for LFM Symbols: Channel SNR = -24.4 dB 
 

Metrics 
 

Best 
Case 

No 
NLAS 
tk = 0 

 

With 
NLAS 
tk = 0 

 

No 
NLAS 
tk = ±0.5T 

 

With 
NLAS 
tk = ±0.5T

 
Resolution (Sec) 2.0×10-3 2.7×10- 1.9×10-3 2.1×10-3  2.0×10-3  

PSL (dB) -15.95 -7.75 -15.92 -9.32 -13.33 
“Noise Floor” (dB) -10.70 -5.06 -10.91 -6.57 -11.05 

Ambiguity Supp. (dB) - - 5.84 - 4.48 
Peak Response (dB) 0.00 1.84 4.00e-3 0.96 4.00e-3 

∆D (dB) 10.70 6.90 10.91 7.53 11.05 
∆P (dB) - - 4.0×10-3 - 4.0×10-3  
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Table 4-10.  Correlation Statistics of Sinusoidal-Based Brown Symbols: M = 4, E > 99%, 

GD =  1000, TB = 7153, Ωo = 78π 
 

 PSL 
(dB) 

ISL 
(dB) 

PCCL 
(dB) σkk

2 σkl
2 

ρ00(τ) -23.02 -18.83 - 1.64×10-4 - 
ρ11(τ) -23.02 -18.83 - 1.64×10-4 - 
ρ22(τ) -23.02 -18.83 - 1.64×10-4 - 
ρ33(τ) -23.02 -18.83 - 1.64×10-4 - 
ρ01(τ) - - -9.87 - 2666.7 
ρ02(τ) - - -12.00 - 2666.7 
ρ03(τ) - - -10.94 - 2666.7  

 
 

Table 4-11.  Matched Filter Response for Sinusoidal-Based Brown Symbols 
 

Metrics Noiseless 
Channel 

Noisy 
Channel 

Best Case

Noisy 
Channel 

tk = 0 

Noisy 
Channel 

 tk = ±0.5T 

Resolution (Sec) 4.81×10-2 3.55×10-2 NDR NDR 
PSL (dB) -23.02 -16.91 - - 

“Noise Floor” (dB) - -12.20 14.74 14.53 
Peak Response at τ=0 (dB) - 0.00 8.60 6.50 

∆D  (dB) - 12.20 -6.14 -8.03  
 
 

Table 4-12. NLAS Output for Sinusoidal-Based Brown Symbols: Channel 
SNR = -24.4 dB  

 

Metrics 
 

Best 
Case 

No 
NLAS 
tk = 0 

 

With 
NLAS 
tk = 0 

 

No 
NLAS 

 tk = ±0.5T 
 

With 
NLAS 

 tk = ±0.5T
 

Resolution (Sec) 5.09×10-2 NDR NDR NDR NDR 
PSL (dB) - - - - - 

“Noise Floor” (dB) -13.18 15.00 1.83 14.76 0.33 
Ambiguity Supp. (dB) - - 13.17 - 14.43 
Peak Response (dB) 0.00 10.90 0.29 6.25 -0.64 

∆D 13.18 -4.10 -1.54 -8.51 -0.97 
∆P -  0.29 - -0.64  
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Table 4-13.  Correlation Statistics of CS Piecewise-Based Brown Symbols: M = 4, 

E > 99%, GD = 10, TB = 7098, Ωo = 1000π 
 

 PSL 
(dB) 

ISL 
(dB) 

PCCL 
(dB) σkk

2 σkl
2 

ρ00(τ) -23.00 -18.76 - 1.0×10-6 - 
ρ11(τ) -23.00 -18.76 - 1.0×10-6 - 
ρ22(τ) -23.00 -18.76 - 1.0×10-6 - 
ρ33(τ) -23.00 -18.76 - 1.0×10-6 - 
ρ01(τ) - - -26.36 - 15.01 
ρ02(τ) - - -29.62 - 26.66 
ρ03(τ) - - -27.64 - 26.66  

 
 

Table 4-14.  Matched Filter response for CS Piecewise-Based Brown Symbols 
 

Metrics Noiseless 
Channel 

Noisy 
Channel 

Best Case

Noisy 
Channel 

tk = 0 

Noisy 
Channel 

 tk = ±0.5T 

Resolution (Sec) 2.73×10-3 2.69×10-3 NDR 2.84×10-3  
PSL (dB) -22.54 -14.28 - -7.35 

“Noise Floor” (dB) - -11.93 3.59 -0.79 
Peak Response at τ=0 (dB) - 0.00 -0.75 1.04 

∆D (dB) - 11.93 -4.34 1.83  
 
 

Table 4-15.  NLAS Output for CS Piecewise-Based Brown Symbols: Channel 
SNR = -24.4 dB 

 

Metrics  
Best Case 

No 
NLAS 
tk = 0 

 

With 
NLAS 
tk = 0 

 

No 
NLAS 
tk = ±0.5T 

 

With 
NLAS 
tk = ±0.5T 

 
Resolution (Sec) 3.90×10-3 NDR 3.76×10-3 4.74×10-3 3.97×10-3 

PSL (dB) -19.11 - -19.95 -9.29 -16.58 
“Noise Floor” (dB) -11.08 4.23 -11.22 -0.96 -11.25 
Ambiguity Supp. - - 15.46 - 10.28 

Peak Response (dB) 0.00 -0.55 -0.20 1.09 -0.36 
∆D  (dB) 11.08 -4.78 11.02 2.05 10.89 
∆P  (dB) - - -0.20 - -0.36  
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Table 4-16.  Comparison of Detection Capability and NLAS Processing Cost for 

Completely Overlapped Scenario (tk = 0)  (Relative to peak response) 
  

 LFM Sinusoidal CS Piecewise VS Piecewise 

MF ∆D (dB) 8.23 -6.14 -4.34 -1.42 

NLAS ∆D (dB) 10.91 -1.54 11.02 10.00 

Ambiguity Supp.(dB) 5.84 13.17 15.46 13.50 

Processing Cost ∆P (dB) .004 0.29 -0.20 -0.75  
 

 
Table 4-17.  Comparison of Detection Capability and NLAS Processing Cost for 

Partially Overlapped Scenario Scenario (tk = ±0.5T).  (Relative to Peak Response) 
 
 LFM Sinusoidal CS Piecewise VS Piecewise 

MF ∆D (dB) 8.48 -8.03 1.83 4.04 

NLAS ∆D (dB) 11.05 -0.97 10.89 10.92 

Ambiguity Supp.(dB) 4.48 14.43 10.28 10.23 

Processing Cost ∆P 
(dB) .004 -0.64 -0.36 -0.33 

 
 
 

Table 4-18.  Signal Detection Performance Improvement Using NLAS over MF 
  

Scenario LFM Sinusoidal CS Piecewise VS 
Piecewise 

Avg 
Imp 

Overlapped (dB) 2.68 4.60 15.36 11.42 8.51 
Partially Overlapped 

(dB) 2.57 7.06 9.06 6.88 6.39  
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CHAPTER 5.  CONCLUSIONS AND RECOMMENDATIONS 
 

5.1 Introduction 

Chapter 5 provides a summary of the research results and contributions.  Efforts 

to improve ambiguity suppression using NLAS are discussed and recommendations for 

future research provided. 

 

5.2 Restatement of Research Goal 

As stated in Section 1.3, the research goals include: 

1. The design, synthesis and characterization of new Brown symbols generated 

with a variable slope piecewise basis functions.  

2. Demonstration of the impacts associated with deviating from Brown’s 

prescribed design process. 

3. Characterizing the effect that time windowing (truncation) band limited 

Brown symbols has on NLAS implementation and performance. 

4. Characterizing NLAS detection and ambiguity suppression effectiveness 

using new Brown symbols and subsequent comparison with previously 

developed symbols. 
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5.3 Conclusions 

5.3.1 Variable Slope (VS) Piecewise Basis Functions  

By considering the rms time duration of correlation functions, the Brown symbol theory 

provides a design methodology that decouples and optimizes the compression (envelope 

attributes) and dispersion (phase attributes) property of symbols.  Although the rms time 

duration metric is widely used to characterize signal properties and provides a convenient 

theoretical approach to designing mutually dispersive symbols, the codes suitable for 

NLAS applications must also possess good performance in terms of the Peak Cross-

Correlation Level (PCCL) metric.  In categorizing symbols as either acceptable or 

unacceptable for NLAS applications, waveform dispersive properties must be viewed in 

light of both the rms time duration and PCCL metrics.  The rms time duration of 

correlation functions alone is insufficient for basing a final decision.  Chapter IV 

considered the design of Brown symbols using Variable Slope (VS) piecewise basis 

functions to improve PCCL performance while preserving waveform rms time duration 

properties.  This approach led to implementation of sub-optimal basis functions using an 

otherwise optimal cosine spectral taper.  As a result, the PCCL performance improved by 

7.5 dB relative to optimal symbols generated using sinusoidal basis functions, with 

degradation to equally mutual dispersive properties captured by the rms metric.  The 

compromise of optimality in the dispersion metric was justified by the flexibility offered 

in the dispersive gain parameter GD to control mutual dispersion.  The properties of 

piecewise based symbols having increased bandwidth (Figure 4-5) added another 

dimension for optimizing Brown symbol PCCL performance.  The improvement 

achieved in cross-correlation sidelobe levels (which is linked to phase function design) 
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did not affect the waveform compressive properties (which are linked to envelop design); 

this is a result of the decoupled design approach offered by the graceful theory. 

 
5.3.2 Time Windowing Brown Symbols 

Brown symbols generated with larger bandwidths and large dispersive gains, which 

correspond to larger time bandwidth product waveforms, demonstrated more suitability 

for windowing (at energy levels less than 99.9%) in terms of sidelobe properties.  The 

waveform autocorrelation function properties, such as resolution illustrated in Figure 

4-10, were more sensitive to time windowing than cross-correlation performance.  Using 

the effective symbol duration in the time domain, the desired energy level resulting from 

time windowing must be determined at the application level and guided by metrics of 

interest.  The Brown symbol design process provides the flexibility to tailor symbol 

properties to meet specific requirements.  

  
5.3.3 Nonlinear Ambiguity Suppression (NLAS) Performance 

The newly developed VS piecewise-based Brown symbols were used with NLAS 

processing to demonstrate M-fold ambiguity suppression capability in a noisy channel. 

For the first ambiguous target scenario, two ambiguous signals having zero time delay 

were added to the desired unambiguous signal such that they completely overlapped in 

time.  Despite the presence of two undesired ambiguous signal responses having 

+24.0 dB more signal power, relative to the weaker desired unambiguous signal, the 

NLAS processor effectively suppressed the ambiguous responses.  The peak NLAS 

output response of the desired signal was approximately 11.0 dB above the noise floor 

(Figure 4-20) and the undesired ambiguous responses were suppressed an average of 10.0 
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to 13.0 dB (Table 4-6) – a net improvement of approximately 21.0 to 22.0 dB was 

realized.  This performance was superior to equivalent Matched Filter (MF) processing 

(Figure 4-15) which was unable to detect the “buried” unambiguous signal.  For the 

second ambiguous target scenario, the two ambiguous signals were time delayed such 

that they only partially overlapped the unambiguous signal (±50% in opposite 

directions).  In this case, the unambiguous signal was discernable using conventional MF 

processing (Figure 4-16) primarily due to the superior compression and dispersion 

properties of the coded waveforms.  As in the first scenario, the NLAS processing 

effectively suppressed all the ambiguous energy and induced minimal “coloration” on the 

unambiguous signal response (Figure 4-23).  The “loss” of desirable unambiguous energy 

resulting from NLAS processing and the use of adaptive reserved code thresholding was 

less than 1.0 dB for all cases considered (Table 4-17). 

 
The effectiveness of NLAS ambiguity suppression was also demonstrated for LFM coded 

waveforms and Brown symbols generated using sinusoidal and Constant Slope (CS) 

piecewise basis functions.  For sinusoidal-based Brown symbols, both NLAS and MF 

processing were ineffective at detecting the unambiguous signal having coded symbol 

specifications of Table 4-10.  Although the sinusoidal-based Brown waveforms are 

optimal from an rms time duration perspective, the VS piecewise-based symbols with 

lower PCCL levels provided superior signal detection.  The CS piecewise-based Brown 

symbols, as implemented with sub-optimal dispersion, provided relatively equivalent 

signal detection and ambiguity suppression performance as the VS piecewise-based 

Brown symbols. Comparing NLAS processing using LFM coded waveforms with a 
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constant threshold, NLAS processing with piecewise-based Brown symbols and adaptive 

reserved code thresholding provides relatively equivalent performance in signal detection 

as indicated by the 11.0 dB difference in peak-to-noise floor responses shown in 

Table 4-16 and Table 4-18.  The NLAS signal processing technique improved signal 

detection by an average of +8.5 dB compared to traditional matched filter processing.   

 
 

5.4 Significant Research Contributions 

This research has made significant progress in developing and employing near-

optimum Brown symbols with NLAS processing to suppress range ambiguous responses.  

The knowledge base regarding the impact(s) of envelope exchange implementation for 

optimizing symbol PCCL performance is successfully expanded.  The VS piecewise-

based Brown symbols, developed and characterized under this research, provide 

equivalent NLAS signal detection performance as LFM coded waveforms.  However, the 

M = 2 constraint of LFM coding is removed and Brown symbol demonstration paves the 

way for M-channel (M > 2) NLAS applications.  Palermo’s vision of achieving M-fold 

ambiguity suppression capability is now much closer to reality.   

 
 

5.5 Recommendations for Future Work 

The complexity of NLAS demonstrations must be increased using pulse diverse 

radar data containing the effects of clutter and complex target returns.  NLAS ambiguity 

suppression capability using Brown symbols must be demonstrated in an environment 

containing realistic propagation factors and operational conditions.  Such an effort would 
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truly show the potential enhancement that NLAS processing can provide systems 

requiring enhanced clutter suppression.   

The application of Brown symbols beyond the NLAS framework must be 

investigated further.  Some preliminary work on terrain-following radar applications 

suggest that Brown symbols may provide some improvement over current Walsh code 

implementations.  The fine resolution offered by these waveforms promise great potential 

for radar applications such as terrain mapping.  Other technology areas such as 

communications requiring multiple access capability and navigation aided precision 

location may benefit from mutually dispersive nature of the symbols.    
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